Broad-band interferometric observations of pre-main sequence stars.

EuroWinter School *Observing with the Very Large Telescope Interferometer*

> Les Houches, France February 3-8, 2002

J.P. Berger Harvard-Smithsonian Center for Astrophysics February 5th 2002

Outline

- **1**. Young stellar objects: the astronomical unit frontier.
- 2. FU Ori interferometric observations.
 - IOTA-PTI Raw data reduction.
 - Data calibration.
 - Testing standard accretion disk models.
- **3**. Disks and the VLTI.

Why observing PMS stars with IR interferometers ?

Accretion mechanisms

magneto-hydrodynamics
turbulence

Accretion-ejection link

Physico-chemical processes:

dust aggregationplanetesimals formationplanet formation

Multiple systems formation

Observing with the VLTI

J.P. Berger -- Broadband observations of PMS disks

February 6th 2002 3

Probing the inner AU *The SED diagnostic*

Observing with the VLTI J.P. Berger -- Broadband observations of PMS disks February 6th 2002 4

Challenging theories and models

Near infrared interferometric measurements:

Herbig AeBe:

12/16 resolved in H or K band;
Standard disk model fails 11/12;
Internal cavity bigger than predicted;
11/12 Apparent symmetry;

T Tauris:

•3/3 resolved
•2/3 uncompatible with std disk model
•Internal cavity bigger than predicted

Akeson et al. 2001, Tuthill, Monnier, Danchi 2001, Millan-Gabet et al. 2001, Akeson et al. 2000, Malbet, 1998.

Observing with the VLTI J.P. Berger -- Broadband observations of PMS disks February 6th 2002 5

The Fu Orionis case

FU Orionis stars:

- T Tauri stars;
- Have undergone photometric outbursts attributed to accretion disk instability;
- Disk luminosity ovewhelms star luminosity;
- Ideal LB interferometry target to test accretion disk models

FU Ori raw data reduction (1)

IOTA

Fu Ori: data calibration

Instrumental visibility

- Polarization
- •Dispersion
- •Atmosphere...

All phenomenon have different timescales.

Data calibration:

- •Asserting transfer function stability
- •Interpolation at the measurement point
- •The accuracy goals leads to certain constraints
 - -calibrators diameters -number of calibrators -spectral type -angular distance on the sky

$$V_{finalfuori}^{2}(u, v) = f(V_{obsfuori}^{2}, V_{ical}^{2}(\phi_{i}), W_{i}, \frac{1}{\sigma_{cal}^{2}})$$

$$\varepsilon_{final-fuori} = g(\varepsilon_{meas-fuori}, \varepsilon_{meas-cal}(i), \varepsilon_{diam})$$

 $(u, v) = f(U^2)$

Fu Ori calibrated data:

and (u, v) coverage

Two remarks:

- •FU Ori is resolved at long baselines;
- •There is evidence for small oscillations in the visibility curves.

The accretion disk model:

Fitting SED and visibility curves:

Constraints on the accretion disk:

- Exploring all the disk parameter space is impossible one has to put some thought in the fitting step (slightly resolved object)
- External constraints are crucial :SED, veiling etc...
- two color constraints: the standard accretion disk model still holds.

$$T \approx r^{-3/4} \dot{M} = 4.10^{-5} M_{\odot} / yr A_V \approx 1.2$$

Fu Ori picture

Unexpected features:

The visibility model:

$$V(u,v) = \frac{1}{(1+r_{12})^2} [r_{12}^2 + V_2^2(u,v) + 2r_{12}V_2(u,v)\cos(\phi_2 - \phi_1 + 2\pi\vec{B}\vec{s})]$$

Conclusion

*Interferometric observations challenge standard models.
*Fu Ori: a unique lab to study accretion disk theory.
*Rely first on simple models.
*Disk study (tre law, disk evolution ...) needs visibility accuracy (dynamic range) for which data calibration is crucial.
*2 range of projected baselines minimum
*SED complementary information important but ...
*Expect to be surprised even if your model fits the SED.

YSO science with the VLTI

imaging not standard by-product but ...

A lot of exciting science

*****resolving multicolor structures TTS, HAeBe

AMBER -MIDI will not probe the same part of the disk (thermal emission, scattering ...)

*****circumbinary disk-star interaction

*****using spectral resolution:

constraining wind physical properties, interaction with disk, probing circumstellar dynamics (under certain conditions)

\star using closure phase closure information

En attendant l'image Fu Ori

Collab: F. Malbet, R. Lachaume, J.L. Monin

