Introduction to Data Reduction

EuroWinter School

Observing with the Very Large Telescope Interferometer

Les Houches, France February 3-8, 2002

A. Chelli Laboratoire d'Astrophysique de Grenoble

Topics

System Analysis

Α.

The perturbed wavefront Diffraction effects: the pupil function Image spectrum: the transfer function The field of view Spatial filtering

Data processing

- The observables
- Interferometric equation
- Temporal coding
- •Wavelet analysis
- Spatial coding
 - Visibility
 - Differential phase
 - Closure phase
- The AMBER case

The perturbed wavefront

- Object wavefront $\rightarrow \Psi_o(x)$
- Atmospheric effects
- Perturbed wavefront $\rightarrow \Psi(x,t) = \Psi_o(x)e^{i\phi(x,t)}$

 \rightarrow

The perturbed wavefront is defined by

 $N_s = \left(\frac{D_s}{r_0}\right)^2$ dom phases

 $e^{i\phi(x,t)}$

Calibration problems

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Diffraction effects: the pupil function

- Fraunhofer diffraction $\rightarrow A(\alpha, t) \propto \int_{Aperture} \Psi(x, t) e^{-2i\pi \alpha \frac{x}{\lambda}} dx$
- Pupil function with \rightarrow P(u) with $u = \frac{x}{\lambda}$

 $A(\alpha,t) \propto \int \Psi(u,t) P(u) e^{-2i\pi\alpha u} du$

 $A(\alpha,t) \propto FT \big[\Psi(u,t) P(u) \big]$

The diffracted field is proportional to the Fourier transform of the input field

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Image spectrum: the ideal transfer function

Image plane intensity distribution \rightarrow $I(\alpha) = \langle |A(\alpha)|^2 \rangle \propto \langle |FT[\Psi_o(u)P(u)]|^2 \rangle$ Image spatial spectrum \rightarrow $I(f) \propto \int \langle \Psi_o^*(u)\Psi_o(u+f) \rangle P^*(u)P(u+f)du$ Zernike-van Cittert theorem \rightarrow $\langle \Psi_o^*(u)\Psi_o(u+f) \rangle \propto O(f)$ Image spectrum \rightarrow I(f) = O(f).T(f)Ideal transfer function \rightarrow $T(f) = \frac{1}{s} \int P(u)P^*(u+f)du$

The field of view (FOV)

- <u>Theorem</u>: the Fourier transform of a periodic function with period is *L* discrete at points separated with $\Delta f = \frac{1}{L}$
- These points are called *independant points*
- Single telescopes have continous transfer function
 - \rightarrow the FOV is only limited by geometrical constraints
- Diluted telescopes have discontinous transfer function
 → the FOV is limited by the sampling of the pupil plane

Importance of positivity and *support* for image reconstruction

Spatial filtering

- Non fibered (multimode) interferometers transmit the object spectrum over the support of the transfer function
- Optical fibers \rightarrow $A(\alpha, t) = c(t)G(\alpha)$
- Transform $N_s = \left(\frac{D}{r_0}\right)^2$ and om phases into 1 random flux
- Fibered (monomode) interferometers transmit the mean object spectrum over the pupil

the FOV is limited to one Airy disc

Data processing: the observables

 \rightarrow

 \rightarrow

 \rightarrow

• Object spatial spectrum

$$O(f) = \frac{\int O(\alpha) e^{-2i\pi f\alpha} d\alpha}{\int O(\alpha) d\alpha}$$

- The observables
 - The visibility
 - The differential visibility \rightarrow
 - The differential phase \rightarrow
 - The closure phase

V(f) $V(f,\sigma_1)/V(f,\sigma_2)$ $\phi_d = \phi(\sigma_1) - \phi(\sigma_2)$ $\phi_c = \phi_{12} + \phi_{23} - \phi_{13}$

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Data processing: starting point

- Data processing starting point, data corrected from
 - Detector bias
 - Flat field
 - Bad pixels
- The 3 basic signals per frame:
 - 1 interferometric signal
 - 2 photometric signals

$$P_1'(z) = K_1(z) + B_1(z)$$

 \rightarrow

$$S'(z) = S(z) + B(z)$$

$$P_2'(z) = K_2(z) + B_2(z)$$

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Interferometric equation

- Beam recombination \rightarrow $|\Psi_1(\sigma) + \Psi_2(\sigma)|^2 * g(\sigma)$
- Interferometric equation: z = t (MIDI) or $z = \alpha$ (AMBER)

$$S'(z) = K_1(z) + K_2(z) + 2Vq(z + \Delta z, \delta\sigma)\sqrt{K_1(z)K_2(z)}cos\Phi(z) + B(z)$$
 $\Phi(z) = 2\pi f_c(z + \Delta z) + \phi_s + \phi_o$

• Temporal coherence effect (assuming square spectral filter)

$$q(z + \Delta z, \delta \sigma) = sinc \left[f_c(z + \Delta z) \frac{\delta \sigma}{\sigma} \right]$$

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Pre-processing: 1st order bias corrections

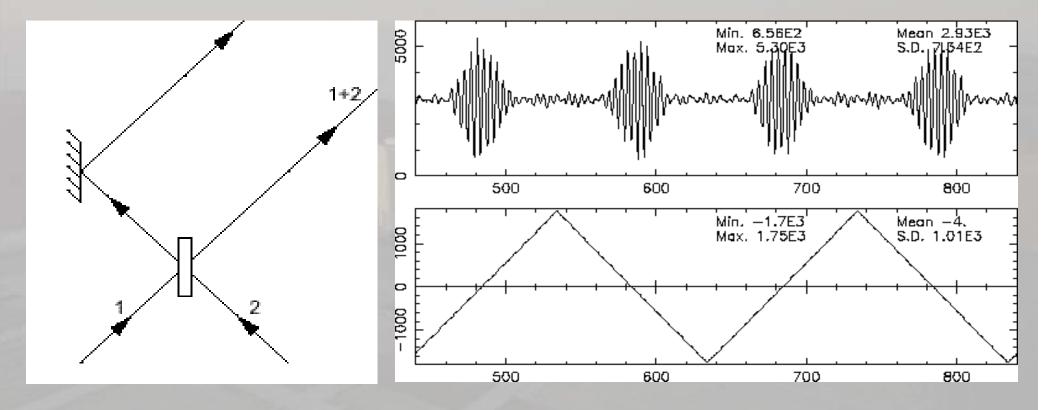
• Photometric bias corrections

$$S(z) = S'(z) - \langle B(z) \rangle$$

 $P_1(z) = P'_1(z) - \langle B_1(z) \rangle$
 $P_2(z) = P'_2(z) - \langle B_2(z) \rangle$

• The MIDI case

Temporal coding (MIDI)



Observing with the VLTI A. Chelli – Introduction to Data Reduction

Temporal coding: the visibility (1)

• Interferometric equation

 $S(t) = K_1(t) + K_2(t) + 2V\sqrt{K_1(t)K_2(t)}\operatorname{sinc}\left[(vt+d)\delta\sigma\right]\cos\Phi(t)$

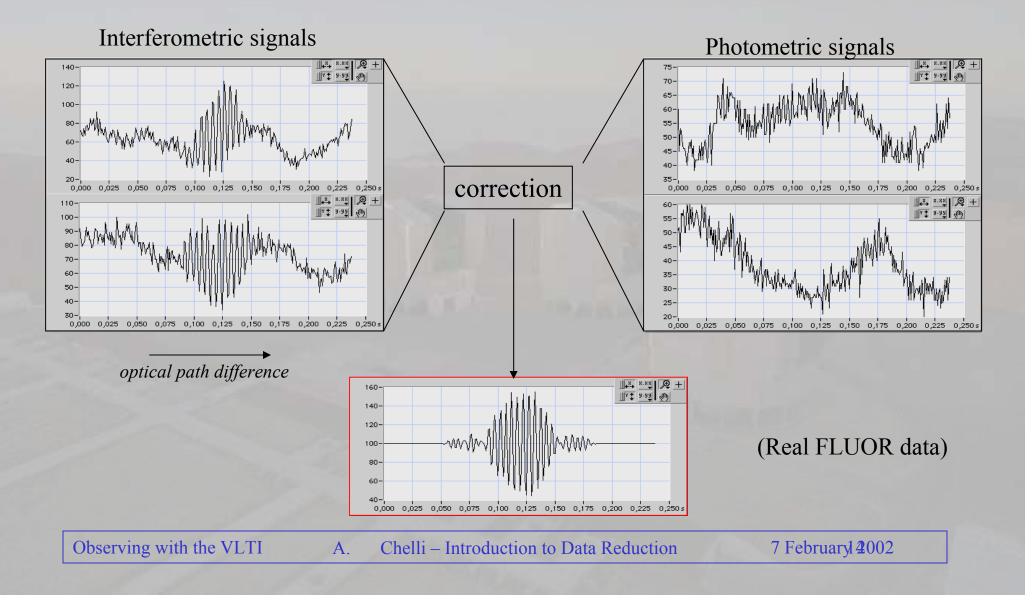
 $\Phi(t) = 2\pi v t\sigma + 2\pi d\sigma + \phi_s + \phi_o$

• Correction of the interferogram

$$s(t) = \frac{S(t) - P_1(t) - P_2(t)}{\sqrt{P_1(t)P_2(t)}} = 2V sinc [(vt + d)\delta\sigma] cos\Phi(t)$$

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Temporal coding: an example of interferogram



Temporal coding: the visibility extraction

• Spectrum
$$\rightarrow$$
 $s(\nu) = s^+(\nu) + s^-(\nu)$

$$<\int s^+(\nu)d\nu> = Ve^{i\phi_0}e^{i\phi_s} < sinc(d\delta\sigma)e^{2i\pi d\sigma}$$

Not a good estimator of the visibility

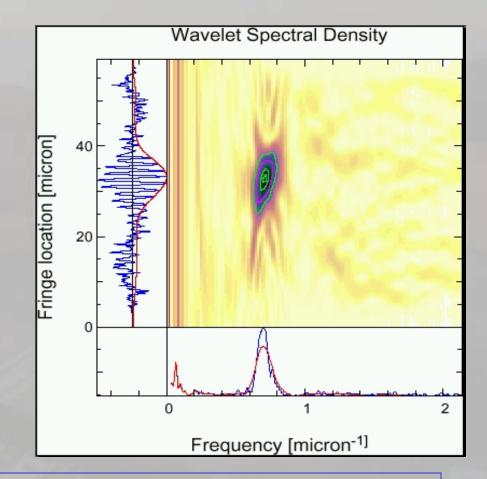
• Power spectrum $\rightarrow < \int |s^+(\nu)|^2 d\nu > = V^2 + \langle b \rangle$

Good estimator of the visibility \rightarrow to be corrected for system visibility (calibrator)

- Avantage of temporal coding \rightarrow insensitive to the OPD
- Inconvenient \rightarrow sensitive to opd distorsions (relaxed at 10µm for MIDI)

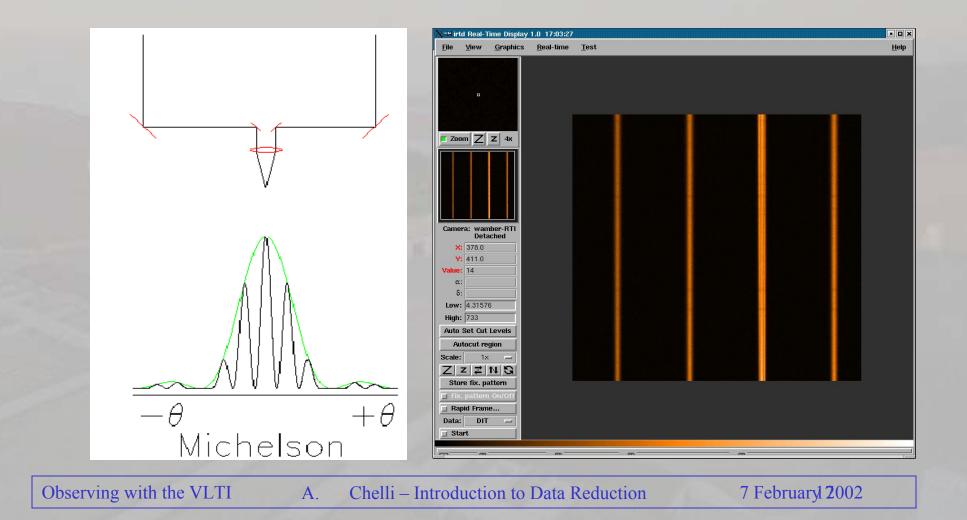
Temporal coding: wavelet analysis

- Wavelet analysis could be a powerful tool to analyse temporal interferograms
- Allow to make a analysis of possible OPD variations along the interferogram
- \rightarrow tool to test the quality
- Better estimate of the visibility?
- \rightarrow to be investigated further



Observing with the VLTI A. Chelli – Introduction to Data Reduction

Spatial coding (standard)



Spatial coding: the visibility (1)

• Interferometric equation

 $S(\alpha) = K_1 a_1(\alpha) + K_2 a_2(\alpha) + 2V\sqrt{K_1 K_2}\sqrt{a_1(\alpha)a_2(\alpha)}sinc\left[(b\alpha + d)\delta\sigma\right]cos\Phi(\alpha)$

$$\Phi(\alpha) = 2\pi b\alpha\sigma + 2\pi d\sigma + \phi_s + \phi_o$$

• Continuum correction

 $s(\alpha) = S(\alpha) - P_1(\alpha) - P_2(\alpha) = 2V\sqrt{K_1K_2}\sqrt{a_1(\alpha)a_2(\alpha)}sinc\left[(b\alpha + d)\delta\sigma\right]cos\Phi(\alpha)$

Spatial coding: the visibility (standard 1)

• Spectrum \rightarrow $s(f) = s^+(f) + s^-(f)$

 $<\int s^{+}(f)df>=Ve^{i\phi_{o}}e^{i\phi_{s}}\sqrt{a_{1}(0)a_{2}(0)}<\sqrt{K_{1}K_{2}}sinc(d\delta\sigma)e^{2i\pi d\sigma}>$

Not a good estimator of the visibility

• Power spectrum

 $<\int |s^+(f)|^2 df >= V^2 \int a_1(\alpha)a_2(\alpha) < K_1 K_2 sinc^2 \left[(b\alpha + d)\delta\sigma \right] > d\alpha$

Sensitive to the OPD

Spatial coding: the visibility (standard 2)

- Necessity to correct each interferogram for the non zero OPD
- Phase of the interferogram $2\pi d\sigma + \phi_s + \phi_s$ ear function of the OPD
- d estimated from the slope of the fringes
 - differential phase of $s^+(f)$
 - includes also dispersion within fibers (assuming linearity with σ)
- Correction for the OPD

$$m(\alpha) = \frac{s(\alpha)}{sinc[(b\alpha + d)\delta\sigma]} = 2V\sqrt{K_1K_2}\sqrt{a_1(\alpha)a_2(\alpha)}cos\Phi(\alpha)$$

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Spatial coding: the visibility (standard 3)

• Power spectrum

$$<\int |m^+(f)|^2 df > = V^2 < K_1 K_2 > \int a_1(\alpha) a_2(\alpha) d\alpha + < b >$$

• Scalar product of the photometric channels

$$<\int P_1(lpha)P_2(lpha)dlpha>=< K_1K_2>\int a_1(lpha)a_2(lpha)dlpha$$

- The visibility $V^2 = \frac{\langle \int |m^+(f)|^2 df \rangle \langle b \rangle}{\langle \int P_1(\alpha) P_2(\alpha) d\alpha \rangle}$
 - correction of OPD jitter during integration easy

To be corrected for system visibility on calibrator

Spatial coding: the differential phase

• Cross spectrum at 2 different wavelengths

$$\int s^{+}(f,\sigma_{1})df \int s^{+*}(f,\sigma_{2})df = Ge^{2i\pi d(\sigma_{1}-\sigma_{2})+i(\phi_{1}-\phi_{2})+\phi_{s}}$$

- Non zero OPD estimated from the sope of the fringes as a function of σ
- Differential phase

$$\phi_1 - \phi_2 = Arg \left\langle e^{-2i\pi d(\sigma_1 - \sigma_2)} \int s^+(f, \sigma_1) df \int s^{+*}(f, \sigma_2) df \right\rangle - \phi_s$$

- Correction of dispersion within fibers (2nd order)
- System phase ϕ_{s} alibrated with the beam commuter device (bcd) and calibrator \rightarrow problem of calibrators

Observing with the VLTIA.Chelli – Introduction to Data Reduction7 Februar 2002

Spatial coding: the closure phase (standard)

- With N telescopes the standard method for visibility and phase extraction is based on the separability of the Nx(N-1)/2 high frequency peaks
- The 3 telescopes case: 3 high frequency peaks in the spectrum

$$s^+(f - f_{12})$$
 $s^+(f - f_{23})$ $s^+(f - f_{13})$

• Closure phase = bispectrum phase

$$\phi_{12} + \phi_{23} - \phi_{13} = Arg \left\langle \int s^+ (f - f_{12}) df \int s^+ (f - f_{23}) df \int s^{+*} (f - f_{13} df) \right\rangle - \phi_s$$

• The system phase $\phi(a)$ deally zero) is to be calibrated on a reference source

Observing with the VLTI A. Chelli – Introduction to Data Reduction 7 Februar 23002

The AMBER case

- The 2 telescopes case
 - the 2 high frequency peaks are separated
 - previous formalism applicable
- The 3 telescopes case
 - partial overlapping of the 3 frequency peaks to reduce the nb of pixels
 - previous formalism non applicable
 - need to work in the image plane by modelling each interferogram

The AMBER case: modelling the interferograms

Continuum correction

 $m_k = S_k - P_{1k} - P_{2k} = 2V\sqrt{K_1K_2}\sqrt{a_{1k}a_{2k}}sinc\left[(b\alpha_k + d)\delta\sigma\right]cos\Phi_k$

 $\Phi_k = 2\pi b\alpha_k \sigma + 2\pi d\sigma + \phi_s + \phi_o$

- Modelling the interferograms: need to know the OPD
 - Iterative process (3 or 4 steps)
 - -1^{st} step: assume OPD = 0 and model the interferograms
 - 2nd step: 1st estimate the OPD from differential phase slope
 - 3rd step: inject estimated OPD and remodel the interferograms
 - 4th step: if necessary repeat 2nd and 3rd steps

How to model the interferograms

- Describing the 1st step \rightarrow $m_k = c_k R d_k I = \frac{1}{2} (W_k C + W_k^* C^*)$
- C = R + iI is the complex coherent energy of the object

$$C = 2V\sqrt{K_1K_2}\sqrt{\sum_{j=1}^n a_{1j}a_{2j}} \times e^{i\phi_o}e^{2i\pi d\sigma}$$

 $W_k = c_k + i d_k$ is the carrying wave of the interferometer

•

$$W_{k} = \sqrt{\frac{a_{1k}a_{2k}}{\sum_{j=1}^{n} a_{1j}a_{2j}}} \times e^{i(2\pi f \alpha_{k} + \phi_{s})}$$

• The carrying wave is determined experimentally before the observations

The complex coherent energy

• C is estimated by minimizing \rightarrow

$$c^{2} = \sum_{k=1}^{n} \left(\frac{m_{k} - c_{k}R + d_{k}I}{\sigma_{k}} \right)^{2}$$

• Which gives:

$$R = \frac{\sum_{j=1}^{n} \frac{c_k m_k}{\sigma_k^2} \sum_{j=1}^{n} \frac{d_k^2}{\sigma_k^2} - \sum_{j=1}^{n} \frac{d_k m_k}{\sigma_k^2} \sum_{j=1}^{n} \frac{c_k d_k}{\sigma_k^2}}{\sum_{j=1}^{n} \frac{c_k^2}{\sigma_k^2} \sum_{j=1}^{n} \frac{d_k^2}{\sigma_k^2} - \left(\sum_{j=1}^{n} \frac{c_k d_k}{\sigma_k^2}\right)^2}{\sum_{j=1}^{n} \frac{c_k m_k}{\sigma_k^2} \sum_{j=1}^{n} \frac{c_k d_k}{\sigma_k^2} - \sum_{j=1}^{n} \frac{d_k m_k}{\sigma_k^2} \sum_{j=1}^{n} \frac{c_k^2}{\sigma_k^2}}{\sum_{j=1}^{n} \frac{c_k^2}{\sigma_k^2} - \sum_{j=1}^{n} \frac{d_k m_k}{\sigma_k^2} \sum_{j=1}^{n} \frac{c_k^2}{\sigma_k^2}}{\sum_{j=1}^{n} \frac{c_k^2}{\sigma_k^2} - \sum_{j=1}^{n} \frac{d_k m_k}{\sigma_k^2} \sum_{j=1}^{n} \frac{c_k^2}{\sigma_k^2}}{\sum_{j=1}^{n} \frac{c_k^2}{\sigma_k^2} - \sum_{j=1}^{n} \frac{d_k m_k}{\sigma_k^2}} \right)^2}$$

• C is obtained by matrix transformation

 $\rightarrow \qquad \left[\begin{array}{c} R\\ I^{-} \end{array}\right] \text{m}] \text{ x [P2VM]}$

• Generalisation to n telescopes immediate

Observing with the VLTI A. Chelli – Introduction to Data Reduction

Estimates of the observables

• The visibility
$$\rightarrow V^2 = \frac{\langle |C|^2 \rangle - \langle b \rangle}{4 \langle \sum_{j=1}^n P_{1k} P_{2k} \rangle} = \frac{\langle R^2 \rangle + \langle I^2 \rangle - \langle b \rangle}{4 \langle \sum_{j=1}^n P_{1k} P_{2k} \rangle}$$

- The differential visibility \rightarrow $C_1 C_2^* = G e^{2i\pi d(\sigma_1 \sigma_2) + i(\phi_1 \phi_2) + \phi_s}$
- The differential phase $\rightarrow \phi_1 \phi_2 = Arg \left\langle e^{-2i\pi d(\sigma_1 \sigma_2)} C_1 C_2^* \right\rangle \phi_s$
- The closure phase $\rightarrow \phi_{12} + \phi_{23} \phi_{13} = Arg \langle C_{12}C_{23}C_{13}^* \rangle \phi_s$

Observing with the VLTI A. Chelli – Introduction to Data Reduction

