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Preamble

• Learning interferometry is like learning to ski:
– You have to want to.
– You start on the green slopes.
– Having expensive skis or reading about it doesn’t help.
– You don’t have to know how to make skis (but it can help).
– It may not help you to escape a shark.

• This is a school:
– Assume nothing, as I will!
– We have a lot to cover – this will not be easy.
– Knowing what questions to ask is what is important.
– Use the lecturers.
– Trust me.

• I am not a car salesman.



Observing with the VLTI                                                                                                                             3C.A.Haniff -- Introduction to interferometry 4th February 2002

Outline
• Image formation with conventional telescopes

– Incoherent imaging equation
– Fourier decomposition

• Coherence functions
– Temporal coherence
– Spatial coherence

• Interferometric measurements
– Fringe parameters

• Imaging with interferometers
– Rules of thumb
– Interferometric images
– Sensitivity
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Image formation with conventional telescopes

Fundamental relationship for incoherent space-invariant imaging:

I(l, m) = ∫∫ P(l-l′, m-m′) O(l′, m′) dl′ dm′ ,

i.e. the observed brightness distribution is the true source brightness
distribution convolved with a point-spread function, P(l, m).

Note that here l and m are angular coordinates on the sky, measured in
radians.
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An alternative representation

This convolutional relationship, which typifies the behaviour of linear
space-invariant (isoplanatic) systems, can be written alternatively, by
taking the Fourier transform of each side of the equation, as:

I(u, v) = T(u, v) ×  O(u, v) ,

where italic functions refer to the Fourier transforms of their roman
counterparts, and u and v are now spatial frequencies measured in
radians-1.

Importantly, the essential properties of the imaging system are
encapsulated in a complex multiplicative transfer function, T(u, v).
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The Transfer function

In general the transfer function is obtained from the auto-correlation of the
complex pupil function:

T(u, v) =  ∫∫ P∗(x, y) P(x+u, y+v) dx dy ,

where x and y denote co-ordinates in the pupil.

A number of key features of this formalism are worth noting:

– For each spatial frequency, u, there is a physical baseline, B, in the
pupil, of length λu.

– In the absence of aberrations P(x, y) is equal to 1 where the
aperture is transmitting and 0 otherwise.

– For a circularly symmetric aperture, the transfer function can be
written as a function of a single co-ordinate: T(f), with f2 = u2 + v2.
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An example

As an example its is useful to consider the normalized transfer function
and point-spread function of a circular pupil with no central
obscuration:

• T(f) falls smoothly to
zero at fmax = D/λ.

• The PSF is the familiar
Airy pattern.

• The full-width at half-
maximum of this is at
approximately 0.9 λ/D.
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What should we draw from all this?

• Decomposition of an image into a series of spatially separated compact
PSFs.

• The equivalence of this to a superposition of non-localized co-
sinusoids.

• The description of an image in terms of its Fourier components.

• The action of an incoherent imaging system as a filter for the true
spatial Fourier spectrum of the source.

• The association of each Fourier component (or spatial frequency) with
a distinct physical baseline in the aperture that samples the light.

• The form of the point-spread function as arising from the relative
sampling (and hence weighting given to) the different spatial
frequencies (and hence baselines) measured by the pupil of the
imaging system.
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Coherence functions

In the context of interferometric imaging it is sometimes useful to
consider the spatio-temporal correlations of the field arising from an
astronomical source:

• This means measuring the electric field produced
by the source at some locations and looking at
the correlations between these measured fields.

• The reason for doing this is that the spectral and
spatial properties of the source can, in principle,
be recovered from these measurements without
using any other apparatus.

• This is imaging without a telescope!
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The temporal and spatial coherence functions

• Measure electric field from a distant source
at two locations r1 and r2 at times t1 and t2.

• Each field is composed of contributions
from each element of the source.

• We define the spatio-temporal coherence function
as V(r1, t1, r2, t2) = 〈E(r1, t1) × E∗(r2, t2)〉.

• We are interested in two special cases:
– t1 = t2 : spatial coherence function.
– r1 = r2 : temporal coherence function.
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The temporal coherence function

For astronomical sources, this coherence function can be written as:

〈E(r1, t1) × E∗(r1, t2)〉 = V(t1−t2) = V(τ) .

In this case we should note that:

• The coherence function does not depend on r1.

• It is a function of a time delay, τ = t1−t2.

• It quantifies the extent to which the fields along
a give wave train are correlated.

• It is related to the quantity that a
laboratory Michelson interferometer
measures.
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Use of the temporal coherence function

The importance of the temporal coherence function arises from an
important result in physics, the Wiener-Khintchine theorem.

This says that the normalized value of the temporal coherence function
V(τ)  is equal to the normalized Fourier transform of the spectral
energy distribution, B(ω), of the source:

V(τ) = ∫B(ω) e−iωτ dω / ∫B(ω)dω .

• A broad spectral energy distribution leads to a coherence function that
decays rapidly since τ and ω are reciprocal coordinates.

• We can define a coherence time: τcoh ∼1/∆ν, with ∆ν = ∆ω/2π the
spectral bandwidth of the radiation.

Measurements of  V(τ) allow recovery of the source spectrum.
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The spatial coherence function

For astronomical sources, this coherence function can be written as:

〈E(r1, t1) × E∗(r2, t1)〉 = V(r1−r2) = V(ρ) .

In this case we see that:

• This coherence function does not depend on t1.

• It is a function of a vector separation, ρ = r1−r2.

• It quantifies the correlations between different
spatial locations on a wavefront.

• It corresponds to the quantity that a Young’s
slit experiment investigates (on axis).
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Use of the spatial coherence function

The importance of the spatial coherence function arises from another
important result in physics, the van Cittert-Zernike theorem.

This states that, for incoherent sources in the far-field, the normalized
value of the spatial coherence function V(ρ) is equal to the normalized
Fourier transform of the brightness distribution in the sky, I(α):

V(ρ) = ∫ I(α) e−i 2π/λ (α.ρ) dρ / ∫ I(α) dρ ,

or in slightly different notation:

V(u, v) = ∫∫ I(l, m) e−i2π(ul + vm) dl dm / ∫∫ I(l, m) dl dm ,

where u and v are the components of the baseline ρ measured in
wavelengths, and l and m are angular coordinates on the sky.
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What should we draw from all this?

• Measurements of these coherence functions allow us to interrogate a
source without using a conventional imaging telescope.

• This in turn relies upon access to measurements of time-averaged
products of field quantities like  〈E(r1) × E∗(r2)〉 .

• The relationships between the source parameters and the coherence
functions is a Fourier transform. Hence it is:
– Linear.
– Invertible.
– Complex.

• We note the mathematical equivalence of the spatial coherence
function V(τ=0, ρ) and the Fourier decomposition of an image we
referred to earlier.
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Spatial interferometry

We can put this all together in the following form:

• We can describe a source in the sky as a superposition of co-sinusoids,
each of which corresponds to a given spatial frequency.

• Measurements of the coherence function are in fact measurements of
the strength of each of these Fourier components.

• Interferometers are merely devices to measure the coherence function.

• Two telescopes with a projected separation B will measure the value of
the Fourier transform of the source brightness distribution at a spatial
frequency u = B/λ.

• Telescopes do all of this for you for a range of baselines at once for
free!
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An aside on measurementAn aside on measurement

In what sense do laboratory set-ups like a Michelson or Young’s slit
experiment measure coherence functions?

• The detector receives contributions
from each slit, E1 and E2.

• The fields are added: E1+E2.

• The time averaged intensity is
measured:
〈(E1+E2)×(E1+E2)*〉 = 〈|E1|2〉 + 〈|E2|2〉 + 〈E1E2*〉 + 〈E2E1*〉

         = 〈 |E1|2〉 + 〈 |E2|2〉 + 〈 2|E1||E2| cos(ϕ) 〉
where ϕ is the phase difference between E1 and E2.

So the properties of the fringe pattern encode the coherence function.
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Measurements of fringes

From an interferometric point of view the key features of any interference
fringe are its modulation and its location with respect to some
reference point.

In particular we can identify:

[Imax−Imin]

[Imax+Imin]
V =

• The fringe visibility:

• The fringe phase:
– The location of the white-

light fringe as measured from
some reference (radians).

These measure the amplitude and phase of the complex coherence
function, respectively.
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Temporal coherence revisited

Consider the response of a Michelson interferometer to a range of
wavelengths:

Gives a resulting fringe pattern whose modulation depth decreases as the
delay between the interfering beams increase.

Note the fringe modulation disappears when the delay, D = λ2/∆λ = lcoh.
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Spatial coherence revisited
Consider the response of an

two-element interferometer
observing a star comprising
two separate infinitesimally
small sources.

As before, the resulting fringe
pattern has a modulation
depth that is reduced with
respect to that from each
source individually.

Note how the positions of the
sources are encoded in the
fringe phase.
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A reality check

How is all this related to
the VLTI?

• Telescopes sample the
fields at r1 and r2.

• Optical train delivers
the radiation to a
laboratory.

• Delay lines assure that
we measure when t1=t2.

• The instruments mix
the beams and detect
the fringes.
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Imaging with interferometers

Physical basis is the van Cittert-Zernike theorem:

– Fourier transform of the brightness distribution is the coherence, or

visibility function, V(u, v) = V(Bx/λ,  By/λ)

So in principle the strategy is straightforward:
– Measure V for as many values of B as possible.
– Perform an inverse Fourier transform ⇒image of the source.

But we need to consider the following topics:
– Typical visibility functions - what do they look like?
– How complete do the measurement of V(u, v) have to be?
– What is the nature of the images that can be recovered?

[Note that all of this will assume the absence of a turbulent atmosphere.]
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Simple sources (i)

V(u) = ∫ I(l) e−i2π(ul) dl / ∫ I(l) dl
[Note that here we explore one-dimensional examples for simplicity.]

• Point source of strength A1 and located at angle l1 relative to the optical
axis.

 V(u) = ∫ A1δ(l-l1) e−i2π(ul) dl / ∫ A1δ(l-l1)dl
       = e−i2π(ul1)

• The visibility amplitude is unity ∀ u.

• The visibility phase varies linearly with  u
(= B/λ).

• Sources such as this are easy to observe, but of little interest if you’ve
built an interferometer for high-angular resolution imaging.
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Simple sources (ii)
A double source comprising point sources of strength A1 and A2 located at

angles 0 and l2 relative to the optical axis.

 V(u) = ∫ [A1δ(l) + A2δ(l-l2)] e−i2π(ul) dl / ∫ [A1δ(l) + A2δ(l-l2)] dl

       = [A1+A2e−i2π(ul2)]/ [A1+A2]

• The visibility amplitude and phase
oscillate as functions of  u.

• To identify this as a binary, baselines
from 0 → λ/l2 are required.

If the ratio of component fluxes is large the modulation of the visibility
becomes increasingly difficult to measure.
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Simple sources (iii)
A uniform on-axis disc source of diameter θ.

 V(ur) ∝ ∫θ/2 ρ J0(2πρur) dρ

            = 2J1(πθur) / (πθur)

• To identify this as a disc requires
baselines from 0 → λ/θ at least.

• The visibility amplitude falls rapidly
as ur increases.

Information on scales smaller than the disc diameter correspond to values
of ur where V << 1, and is hence difficult to measure.
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A more complicated example

Sources without a significant component that is unresolved by the interferometer
will have visibility functions that fall close to zero rapidly, and hence be
difficult to image with many resolution elements across their total extent.
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Image reconstruction

We start with the fundamental relationship between the visibility function
and the normalized sky brightness:

Inorm(l, m) =  ∫∫ V(u, v) e+i2π(ul + vm) du dv

In practice what we measure is a sampled version of V(u, v), so the image
we have access to is to the so-called “dirty map”:

Idirty(l, m) = ∫∫ S(u, v) V(u, v) e+i2π(ul + vm) du dv

                = Bdirty(l, m) * Inorm(l, m) ,
where Bdirty(l,m) is the Fourier transform of the sampling distribution,
or dirty-beam.

The dirty-beam is the interferometer PSF, and while it in general is far less
attractive than an Airy pattern, it’s shape is completely determined by
the samples of the visibility function that are measured.
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Deconvolution in interferometry

Correcting an interferometric map for the Fourier plane sampling function
is known as deconvolution (CLEAN, MEM, WIPE).
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Important rules of thumb

• The number of visibility data ≥ number of filled pixels in the recovered
image:
– N(N-1)/2 × number of reconfigurations ≥ number of filled pixels.

• The distribution of samples should be as uniform as possible:
– To aid the deconvolution process.

• The range of interferometer baselines, i.e. Bmax/Bmin, will govern the
range of spatial scales in the map.

• There is no need to sample the visibility function too finely:
– For a source of maximum extent θmax, sampling very much finer

than ∆u ∼1/θmax is unnecessary.
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UV coverage

• An example of the instantaneous
Fourier plane, or (u, v), coverage of
a  24-element “Keto” array.

• The telescope locations are denoted
by the stars, and the baselines (276
in total) by the dots.

• Broadly speaking this gives
“uniform” sampling, save for a
clustering of baselines near to the
origin.

• The main shortcoming is the central
hole near the origin.
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Field of view and image quality

• The FOV will depend upon:
– The field of view of the

individual collectors. This is
often referred to as the
primary beam.

– The FOV seen by the
detectors. This is limited by
vignetting along the optical
train.

– The spectral resolution. The
interference condition OPD <
λ2/∆λ must be satisfied for
all field angles. Generally ⇒
FOV ≤ [λ/B][λ/∆λ].

• Dynamic range:
– The ratio of maximum

intensity to the weakest
believable intensity in the
image.

– > 105:1 is achievable in the
very best radio images, but of
order several × 100:1 is more
usual.

– DR ∼ [S/N]per-datum × [Ndata]1/2

• Fidelity:
– Difficult to quantify, but

clearly dependent on the
completeness of the Fourier
plane sampling.
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Conventional vs. interferometric imaging

Optical HST (left) and 330Mhz VLA (right) images of the Crab Nebula
and the Orion nebula. Note the differences in the:

– Range of spatial scales in each image.
– The range of intensities.
– The complexity of each image.
– The field of view as measured in resolution elements.
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Sensitivity

What does this actually mean in an optical/infrared interferometric
context?

The “source” has to be bright enough to:

• Allow stabilisation of the interferometric path lengths in real time.

• Allow a reasonable signal-to-noise for the fringe parameters to be
build up over some total convenient integration time. This will be
measured in minutes.

Once this achieved, the faintest features in the interferometric map will be
governed by the dynamic range achievable:

This in turn depends on the S/N and number of visibility data.
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Interferometric science – 2 telescopes
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Interferometric science – 2 telescopes
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Interferometric science – 5 telescopes
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Interferometric science – 21 telescopes



Observing with the VLTI                                                                                                                             43C.A.Haniff -- Introduction to interferometry 4th February 2002

Interferometric science resume

• 2 telescopes: simple parametric model fitting.

• 5 telescopes:  rudimentary imaging of astronomical sources.

• 21 telescopes: imaging of complex astrophysical phenomena.
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Summary

• Image formation with conventional telescopes:
– Fourier decomposition, spatial frequencies, physical baselines.

• Coherence functions:
– Spatial & temporal: these embody the spatial & spectral content of the

source.
– Fundamental relationships are Fourier transforms.

• Interferometric measurements:
– Fringe amplitude and phase are what is important.
– Ability to measure these depends on signal strength & fringe modulation.

• Imaging with interferometers:
– Rules of thumb and differences with respect to what we are used to.
– Expectations based on 50 years of radio/optical/infrared experience.


