AMBERThe near infrared VLTI focal instrument

EuroWinter School

Observing with the Very Large Telescope Interferometer

Les Houches, France February 3-8, 2002

DE L'UNIVERS DES SCIENCES INSTITUT NATIONAL

Romain G. PetrovUniversité de Nice - Sophia Antipolis / CNRS February 6, 2002

OsservatorioAstrofisico diArcetri

Radioastronomie

INL

Max-Planck-Institu

Outline

- •AMBER specifications
- \bullet Principle
- •Description
- •Measurements
- \bullet Observations modes and sequences
- •Limitations and calibrations
- •Examples of applications
- •Potential performances.

The VLTI provides

 B_{12}

B

 B_{13} B_{23}

•Baseline selection

AD on UT or tip-tilt on AT Absolute metrology •Telescopes selection •Beam collection •Wavefront (partial) correction:

•Beam transport •OPD equalization •Cophasing or coherencing

•Double field •Absolute metrology

The focal laboratory

Key programs for specifications choice

Table 1: Scientific programs and requirements used to establish and check the specifications of AMBER

AMBER general specifications

AMBER Principle : 2 T

- 2 Telescope multi axial beam combiner
- spatial filtering

AMBER Principle

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering

AMBER Principle

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering
- fringe peak with with zero piston

AMBER Principle: 2 T, effect of piston

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering
- fringe peak with piston

AMBER Principle: 2 T, correction of piston λ_1 λ_{2}

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering
- fringe peaks with piston and differential phase
-

AMBER Principle: 2 T, correction of piston

- 2 Telescope multi axial beam combiner with cylindrical optics anamorphosis
- spatial filtering
- fringe peaks with piston and differential phase
- dispersed fringes
-

AMBER Principle: 3 T instrument AMBER Principle: 3 T instrument

• 3 Telescopes implementation with non redundant fringe coding

f

AMBER Principle: 3 T instrument AMBER Principle: 3 T instrument

• 3 Telescopes implementation with **compact** non redundant fringe coding

Simulated Simulated detector detector image image

K Band Instrument

K Band and calibration tools

Artificial fringes + artificial fringes shifted by λ**/4 = PTVM calibration**

AMBER: K, H and J bands

AMBER measurements

For each baseline $\mathrm{B_{lm}}\left(12,23,\,13\right)$

Absolute visibility $V_{lm}(\lambda)$ Differential visibility $V_{lm}(\lambda)/V_{lm}(\lambda_0)$ Differential phase $\Phi_{lm}(\lambda) - \Phi_{lm}(\lambda_0)$ Phase closure $\Phi_{123}(\lambda)$

> – Eventually: absolute metrology -> absolute phase $\Phi_{lm}(\lambda)$ -> phase referencing imagery.

These measurements are integrated over a patch around the spatial frequency

Accuracy modes

With or without fringe tracker:

– High precision ($\sigma_{\rm V}$ <<1%): 10 ms frames (limit in spectral coverage) Without fringe tracker:

– High sensitivity (K>11): 50 to 100 ms frames With fringe tracker:

– "long exposures" : 100 ms to 100 s frames

AMBER data processing

Frame: frame time defines observing mode
HP:10 ms; HS: 50 ms; LE: ->100s

- detector cosmetics
- conversion to number of photons
- background subtraction
- computation of V(λ) and $\Phi(\lambda)$ – $\Phi(\lambda_0)$ for each spectral channel
- computation and correction of achromatic piston

Exposure: sequence of frames without source or set-up change Typically 5 minutes

- averaging
- simple bias corrections (example: effect of finite frame time)

Exposure cycles: all exposures needed for full calibration Minimum 10 minutes

- exposures on sky, science target, calibrator star
- exposures after internal changes (spatial or spectral modulation)

"Fundamental" measurement errors "Fundamental" measurement errors

On the visibility modulus:

$$
\sigma_f^2 \psi(\lambda) \approx N^2 \gamma (n(\lambda) + N_p \sigma_{RON} + n_{th}) / M V^2 (\lambda) n^2 (\lambda)
$$

On the phase:

$$
\sigma_f^2 \phi(\lambda) \approx N^2 \gamma (n(\lambda) + N_p \sigma_{\text{RON}} + n_{\text{th}}) / 2 \text{ M V}^2 (\lambda) n^2 (\lambda)
$$

- N_T : number of telescopes
- n(λ): number of photons per frame in channel λ
- N_p : number of pixels per channel
- n_{th} number of background photons in channel λ
- $V(\lambda)$: source visibility x instrument visibility
- M: number of frames used for the measurement

Effects introducing measurement errors Effects introducing measurement errors

Optical aberrations before the fibers:

- changes in coupling efficiency: monitored and corrected
- –
- "antenna" function variations

Polarization

Optical aberrations after the fibers calibrated and corrected Instrument temporal drifts

- variable chromatic piston
	- coupling between beam residual motion and diopters
	- fibers thermal changes
- spectrograph deformation
- temporal variation of detector gain
	- Calibrated using a reference star
		- Calibrated using internal modulation

 piston variation during frame: minimized, corrected from estimation field limitationone polarization selected

………

Errors introduced by instrument variations Errors introduced by instrument variations

Measurement affected by a variable instrument effect:

If the instrumental drifts are lower than the fundamental noise averaged over one calibration period T_0 , the final accuracy is limited only by photon, detector and background noise.

Differential phase and Extra Solar Planets

Instrumental limits to differential interferometry Instrumental limits to differential interferometry of bright sources of bright sources

Spatial modulation calibration

Beam Commuting Device (BCD).

It commutes two of the beams without image inversion. It is activated by inserting the central plate in the beams. It allows to reduce the calibration period down to 60 s or less. To avoid introducing extra effects the specifications are:

- tip-tilt accuracy: 2 arc seconds
- beam jitter accuracy: 10µ^m
- pupil motion: <30 cm
- opd accuracy: 1 µ^m

Without BCD:

$$
\Delta \Phi_{m}(\lambda, t_1) = \Delta \Phi_{*}(\lambda, t_1) + \Delta \Phi_{a}(\lambda, t_1) + \Delta \Phi_{i}(\lambda, t_1) + e_{\Phi}(\lambda, t_1)
$$

With BCD:

$$
\Delta \Phi_{\underline{m}}(\lambda,t_2) = - \Delta \Phi_*(\lambda,t_2) - \Delta \Phi_{a}(\lambda,t_2) + \Delta \Phi_{i}(\lambda,t_2) + e_{\Phi}(\lambda,t_2) + \Delta \Phi_{\mathrm{BCD}}(\lambda,t_2)
$$

Difference:

$$
\Delta \Phi_{m}(\lambda, t_1) - \Delta \Phi_{m}(\lambda, t_2) = 2\Delta \Phi_{*}(\lambda) + 2\Delta \Phi_{a}(\lambda) + e_{\Phi}(\lambda, t_1) - e_{\Phi}(\lambda, t_2) + \Delta \Phi_{BCD}(\lambda, t_2)
$$

Photocenter displacement and super angular resolution

Non resolved object: $\Phi(u=B/\lambda) = 2\pi (B/\lambda) \varepsilon(\lambda)$

Photocenter:

 $\varepsilon(\lambda) = \int_{\mathbf{\Gamma}} o(\mathbf{r}, \lambda) \, d\mathbf{r}$ / $\int o(\mathbf{r}, \lambda) \, d\mathbf{r}$

yields the first order moment of the brightness distribution o(r,λ**), interesting parameter for any object showing spectral features possibly due or connected to "large scale" spatial features.**

K=5, UTs, R=1000, 5h $\sigma_{\rm s}(\lambda) = 0.1$ µas K=10, UTs, R=1000, 5h or K=7, ATs, R= 1000, 5 h $\sigma_{\rm s}(\lambda) = 1$ µas

Observation sequences

Set-up dependant calibrations

(Before observation or after a spectral set-up change)

AMBER observations of a BLR

- **Broad band visibility: BLR size if (partially) resolved.**
- **Narrow channel visibility (R=1000): constraints on velocity field.**
- **For resolved object: differential phase + differential visibility ~ quasi imagery**
- **Differential phase with low spectral resolution: constrains size of extremely unresolved object.**
- **Differential phase with spectral resolution 1000: constrains velocity field on very unresolved source.**

3C273: 2.7pc/marcsec i=60° M_{BH} =5.5×10⁸ M_{\odot}

Summary of modes and performances

Without Fringe Tracker: magnitude for 5σ **fringe detection**

Median seeing conditions (Strehl>50% in K for K<12), one polarization used

With on-axis Fringe Tracker: SNR per spectral channel after 4 hours of integration on a source H=12 for UT and H=9 for AT (present limiting magnitude for fringe tracking ?)

Median seeing conditions (Strehl>50% in K for K<12), one polarization used

Reminder: a SNR=1000 means that the differential phase can be measured with σφ=10−³ *rad corresponding to a 0.6* µ*as photocenter displacement (in K with B=100m)*

With off-axis Fringe Tracker: limiting magnitude for a SNR=5 after 4 hours of integration

Median seeing conditions (Strehl>50% in K for K<12 for reference star, Strehl divided by 2 for Science Source), one polarization used

Conclusion

AMBER will be basically used for model fitting using interferometric measurements = $f(\lambda)$.

In a few cases it can be used to provide "imaging" information.

Typical schedule is:

- •**Delivery of integrated sub systems to Grenoble: April - May 2002**
- \bullet **Laboratory tests in Grenoble: July-November 2002**
- • **Preliminary Acceptance Europe (without BCD and may be without H filter): 12/2002**
- •**Commissioning with Siderostats: February-May 2003**
- •**First ATs and/or UTs+MACAO observations: Summer 2003**
- •**First operation semester: October 2003 - April 2004**
- •**Deadline for first applications: April 2003**
- •**Deadline for SDT applications: December 2002 ??**

Output pupils

Figure 1 : Pupils diameters and distances: the fringe size is the same in the middle of each band.

Images of γ Cas in narrow channels in an emission line

Differential Interferometry of γ Cas

K Band, calibration and service tools

Model-fitting correction

(de M. Vannier et al., conférence ESO « Science Drivers for future VLT/VLTI instruments)

General behaviour of chromatic dispersion is known :

- –Smooth over λ
- –dependent on few unknown parameters

Reference channel(s)

 $\delta_{\text{astro}}(\lambda_0) = 0 \Longrightarrow \delta(\lambda_0)$ is a calibrator for chromatic bias (ex: Dispersion in air \approx f(λ). G(t))

Model fitting

– Well constrained ⇒ few degrees of freedom

Filtering

low-frequency filtering (in λ) removes chromatic bias \odot : Also suppresses low frequencies from astro signal

Phase closure and spectral modulation

Phase closure: $\Phi_{123}(\lambda) = \Phi_{12}(\lambda) + \Phi_{23}(\lambda) + \Phi_{31}(\lambda)$

$$
\Phi_{123}(\lambda) = \Phi_{123*}(\lambda) + \Phi_{123M}(\lambda)
$$

$$
\Phi_{123}(\lambda + \delta \lambda) = \Phi_{123*}(\lambda + \delta \lambda) + \Phi_{123M}(\lambda + \delta \lambda)
$$

$$
[\Phi_{123}(\lambda) - \Phi_{123}(\lambda + \delta \lambda)]/\delta \lambda = [\Phi_{123*}(\lambda) - \Phi_{123*}(\lambda + \delta \lambda)]/\delta \lambda
$$

AMBER Consortium

•Funding, Detector, data acquisition, real time processing

•Funding, Cooled spectrograph

•Instrument operation software, data processing, final integration

•Warm Optics and mechanics, electronics, instrument control software

•Funding, assistance from the technical division