Observability and UV coverage of sources

EuroWinter School

Observing with the Very Large Telescope Interferometer

Les Houches, France February 3-8, 2002

D. Ségransan Planet search and stellar kinematics group Observatoire de Genève, Switzerland 5th February 2002

Reminder: what's the UV plane

$$V\left(\frac{\vec{B}}{\lambda}\right) = V(u,v) = \frac{\hat{I}(u,v)}{\hat{I}(\vec{0})} \quad \text{where} \quad \hat{I}(u,v) \underset{\text{Fourier}}{\longleftrightarrow} \longleftrightarrow_{\text{Transform}} I(x,y)$$

 $\vec{B} = (\Delta X, \Delta Y, \Delta Z) = (X_{T_2} - X_{T_1}, Y_{T_2} - Y_{T_1}, Z_{T_2} - Z_{T_1})$ is the projected baseline vector

 $(u,v) = \frac{1}{\lambda} (\Delta X, \Delta Y)$ are spatial frequencies

Spatial frequencies :

- Unitless: [arcsec⁻¹]
- They represent distances in the incident wavefront measured in wavelength units
- (u,v) are the conjugated coordinates of (x,y)

UV plane sampling with single dish telescope and adaptive optics

I(x,y)

 $/V(u,v)/^2$ (cut-off frequency at $f_c = D/\lambda$)

Resolved binary star at Canada-France-Hawaii Telescope with adaptive optics

UV plane sampling with an interferometer

A 2-telescope-interferometer gives access to <u>one</u> (u,v) point per measurement.

UV plane sampling with an interferometer

A 3-telescope-interferometer gives access to <u>three</u> (u,v) points per measurement.

Filling the gaps in the UV plane

The easy way

- Take advantage of the earth rotation
- Observe at several wavelengths at once $(u,v) = \frac{1}{\lambda} (X,Y)$

The hard way

- By using many telescopes
- By reconfiguring the array a lot

UV plane sampling using the earth rotation

UV plane sampling depends on:

- the hour angle, h
- the source declination, δ
- the baseline vector (X, Y, Z)

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \frac{1}{\lambda} \begin{pmatrix} \sin(h) & \cos(h) & 0 \\ -\sin(\delta)\cos(h) & \sin(\delta)\cos(h) & \cos(\delta) \\ \cos(\delta)\cos(h) & -\cos(\delta)\sin(h) & \sin(\delta) \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Eliminating h from the above equations, one get an <u>ellipse equation</u>:

$$u^{2} + \left(\frac{v - (Z/\lambda)\cos(\delta)}{\sin(\delta)}\right)^{2} = \frac{X^{2} + Y^{2}}{\lambda^{2}}$$

UV plane sampling using the <u>earth rotation</u>

North-South & East-West baseline as seen from a star at δ =-42deg.

UV plane sampling using the earth rotation

This UV plane sampling corresponds to 6 hours observation

UV plane sampling with <u>many telescopes & earth</u> rotation

What about OPD and Delay lines

B sin(θ) can become very large when :

- the baseline is oriented east-west
- the baseline is large
- the star is far from the meridian

Ex :

a 200-meter-baseline (east-west) a star at h=3 hours and $\delta = 0$ deg. Opd=141m

B $sin(\theta)$

Observability & uv coverage practice work session

Date : 05-FEB-2002 Local Time : 00:00:00

STAR_1	9:10:00.000	70 :00:00.000
STAR_2	9:10:00.000	50 :00:00.000
STAR_3	9:10:00.000	30 :00:00.000
STAR_4	9:10:00.000	10 :00:00.000
STAR_5	9:10:00.000	-10:00:00.000
STAR_6	9:10:00.000	-20:00:00.000
STAR_7	9:10:00.000	-30:00:00.000
STAR_8	9:10:00.000	-50 :00:00.000
STAR_9	9:10:00.000	-70 :00:00.000

Observability: delay lines 2T

Observability: delay lines 2T

Observability: delay lines 3T

Observability: delay lines 3T

Observing with the VLTI

Several limitations

- Limited number of recombined telescopes (2-3 for the first generation of instruments on the VLTI)
- Shadowing (telescopes may see each other)
- Delay line stroke may not be long enough
- Changing the telescope configuration IS NOT straightforward
- ⇒ Covering the UV-plane is «very expensive» in observing time with 2-3 telescopes

The goal **IS NOT** to cover the whole UV-plane

Which UV-coverage do I need to conduct my observing program?

ASPRO demo 1

Direct diameter measurement of the red dwarf Gl887 (M0V)

- Easy target for AMBER : J=4.16
- RA : 23:05:52 Dec : -35:51:11
- Expected diameter 1.69 mas

• Baseline B5-J6 does constrain the diameter of this M dwarf

ASPRO demo 2

Parameters of a binary star

- RA : 22:38:33 Dec : -15:18:06
- Expected separation 7.4 mas
- Expected star diameter 0.27 mas
- No information about the PA.

What baseline configuration should we use ?

Well, it depends ...

- on the object you are observing

 ⇒ angular size of the source
 ⇒ simple vs. complex source
 ⇒ model fitting vs. image reconstruction
- on the instrument you are using ⇒ accuracy on visibilities
 - \Rightarrow spectral resolution

Radius measurement with NPOI

- N telescopes >2
- accuracy on $V^2 > 1\%$
- impressive UV coverage
- use of spectral resolution to improve UV coverage

Radius measurement with COAST

- N telescopes = 3
- accuracy on $V^2 > 5\%$
- good UV coverage
- π transition in the closure phase is observed

5th February 2002 22

Radius measurement with IOTA/FLUOR

- N telescope = 2 (at that time)
- accuracy on $V^2 \ll 1\%$
- poor UV coverage but ... a few points at the right place can do the job

Binary star observation with PTI

- accuracy on $V^2 > 1\%$
- limited UV coverage
- but ... binary observed at different phases
- and ... radial velocities

One last difficulty

Observing in Broad

$$(u,v) = \frac{1}{\lambda}(X,Y)$$

- The visibility you measure is averaged over the band
- There is some incertitude about the effective (u, v) coordinate
- Your target may behave differently at different wavelengths

\Rightarrow Some spectral resolution makes life easier