

Differential interferometry

© Bill Pounds

Ph. Stee Observatoire de la Cote d'Azur D^dpartement FRESNEL-Equipe GI2T

Interferometry: fringe analysis

A field of Zebra

*Fringes analysis (x-*λ mode)

R Cas (V \approx 6, K \approx -1.5) B= 14 m - Dispersed Fringes in K band (GI2T).

Modulus of the visibility

• Unresolved object (point source) V=1

How to define a stellar diameter?

Not trivial !

Some definitions:

Optical radius:

 $\tau(r) = \int_{r_0}^r K(r')\rho(r')dr' \approx 1$ with $K(r) = \kappa(r) + \sigma(r)$

Intensity radius: R_I=r with I(r)/I(0) ≈ 0

Measure the temperature of a star

$$L = 4\pi R^2 \sigma T_{eff}^4$$
$$L = 4\pi d^2 f$$
$$\alpha = \frac{R}{d}$$
$$T_{eff}^4 = \frac{1}{\sigma} \frac{f}{\alpha^2}$$

Q: What is Teff?;-)

Diameter distribution of stars ?

Von der Lühe, O., 1995, UAI Symp. 176, Eds. Strassmeier K. & Linsky J, Kluwer, p 147

What can be seen on a solar type star (1 R_m) at 10 pc ?

Spectral filter = spatial filter

Line formation in a rotating envelope

MkIII filter: 10Å

Photocenter displacement on the sky plane: $\phi = f(\lambda)$

Stee 1996, A&A, 311, 945

Differential speckle interferometry of γ Cas: $\phi = f(\lambda)_{\tilde{e}(\lambda) \text{ for } \gamma \text{ Cas in the H}\alpha \text{ line}}$

R.G. Petrov, M. Vannier et al. "DPM with the NGST" July 11, 2001

GI2T interferometer

Spatial direction (1 mas)

Spectral resolution (up to 0.2 Å)

« One-armed » oscillations in the Be Shell star ζ Tau

Long Term H α Variability of ζ Tau fromGuo et al. (+) and GI2T (Å) Spectroscopy Oscillation Curve = Sine Wave Amplifying after 1988, P=3.1 y Vertical Dashed Line : Mark III Observations of ζ Tau

Photometric Data from Hipparcos Mission

Note that the star became brighter just at the V/R minimum corresponding to GI2T observations in November 1993

Interpretation of GI2T observations

Hα GI2T Profiles Versus Doppler-shift for 93 and 94 Observations of ζ Tau

Fringe Amplitude and Phase Diagrams

Schematic Representation of ζ Tau H α long Term Variability According to GI2T.

Nov. 93 : H α Emission with V/R=0.57 and Originates in a Region of the Envelope whose N-S Projected Position is at 0.7 mas South of the Star Oct. 94 : V/R=1.26, N-S Projected Position at 0.5 mas North of the Star

Rotation of the Bulge in the Equatorial Disk of ζ Tau

Interferometry needs models...

Models need interferometry!

Models: to be quantitative...

Parameters	
Spectral type	B0.5IVe
Effective temperature	25000 K
Mass	$16 M_{\odot}$
Radius	10 R _O
Stellar angular diameter	0.45 mas
Luminosity	$3.510^4 L_{\odot}$
Vsin i	230 km s^{-1}
Inclination angle i	45° .
Results	
Polar terminal velocity	2016 km s ⁻¹
Polar mass flux	$1.7 \cdot 10^{-9}$ M _{\odot} yr ⁻¹ sr ⁻¹
Equatorial terminal velocity	200 km s^{-1}
Equatorial mass flux	$5.1 \cdot 10^{-8} M_{\odot} \text{ yr}^{-1} \text{ sr}^{-1}$
Mass loss rate	$3.2 \cdot 10^{-7} M_{\odot} yr^{-1}$
$H\alpha$ major axis	17 stellar radii
$H\alpha$ oblateness	0.72
$H\alpha$ extension	4 mas
Mass of the disk	$6.4 \cdot 10^{-8} M_{\odot}$

γ Cas across H α line profile

Stee et al. 1995, A&A, 300, 219

Can HARO put constraints on these maps ?

Stee et al. 1995, A&A, 300, 219

Stellar rotation |v|=f(B)

0.5

1.0

-1.0

Stellar rotation ϕ =f(B)

Differential interferometry

- Very accurate
- High precision
- Access to very small detail ï µas
- Put very strong constraints

-Difficult to interpret

- -Be careful with resolved objects
- -Need models