From visibilities to science with simple models

EuroWinter School

Observing with the Very Large Telescope Interferometer

Les Houches, France February 3-8, 2002

J. S. Young University of Cambridge 4 February 2002

Why measure limb-darkening?

Some of the reasons:

- Must know it to measure effective temperature
- Interpret eclipsing binary light curves
- Diagnostic for stellar models
- Modelling complex brightness distributions from interferometric data

Measurement Techniques

- Interferometry!
- Lunar occultations
- Gravitational microlensing
- Light curves stars in eclipsing multiple systems

Example Proposal

- Aim: compare continuum limb-darkening of Mira variables with atmospheric models
- Use interferometry with VLTI
- Requirements (for *all* limb-darkening studies):
 - precise measurement of visibility
 - angular resolution
 - spectral resolution
 - sensitivity
 - multiple baselines

Mira-specific requirements

- Need measurements at specific pulsation phases constrains array reconfigurations
- May be better diagnostics for models than limb-darkening!
- Choose bandpass carefully:

4 February 2002 5

Models in Fourier Space

Interferometers measure *visibilities*, related to sky brightness distribution by a Fourier Transform:

$$V(u,v) = \iint dx \, dy \, I(x,y) e^{-2pi(ux+vy)}$$

For a circularly-symmetric disk with centre-to-limb intensity profile I(r) this becomes a Hankel Transform:

 $V(d_1) = 2p \int I(r) J_0(d_1 r) r dr$

Empirical limb-darkening models

- Simple functions •
- Physically reasonable •
- Typically expansions in $\mathbf{m}(r) = \sqrt{1 \frac{r^2}{r_0^2}}$: ullet

Empirical models in Fourier Space

- Examples:
 - Taylor expansion

n:
$$\frac{I(r)}{I_0} = 1 - \sum_{n=1}^{n_{\text{max}}} a_n (1 - m(r))^n$$
 $r < r_0$
 $I(r) = 0$ $r > r_0$

- Hestroffer model: $\frac{I(r)}{I_0} = \mathbf{m}^a \quad r < r_0$
- Analytical expressions for their Hankel transforms can be derived:
 Real space Fourier space

Observing with the VLTI J. S. Young -- From visibilities to science

4 February 2002 8

Realistic models

- Models from Hofmann, Scholz & Wood (1998) A&A 339, 846 (HSW98)
- Dynamical models with realistic atmospheres
- Parameters similar to o Ceti and R Cassiopeiae
- Both fundamental-mode and first-overtone pulsators
- Models predict centre-to-limb variation of intensity as a function of wavelength

Realistic models: limb-darkening

HSW98 M10 v E8380

Real space

Fourier space

Limb-darkening: Points to note

- Larger, more limb-darkened disk gives *identical* short-baseline visibilities to smaller, less limb-darkened disk
- Limb-darkening suppresses second lobe
- Miras are an extreme case; better agreement between different models of less extended stars
- Taylor expansion has many problems

Example Proposal: Requirements

• Requirements for nearest ~5 southern Miras:

- precise measurement of visibility: V=0.02 to +/-5%
- Diameter 20 mas: need 25m max. baseline for 1.3µm measurement
- spectral resolution: ~30
- sensitivity: $J \sim 0$
- multiple baselines: at least 2
- closure phase useful (may be no null)

Example data analysis

- Present real COAST data:
 - $-\chi$ Cygni near minimum light
 - Broad-band 1.3 micron data
 - 6 baselines
 - Closure phases
- Compare data with models appropriate to this pulsation phase:
 - HSW98 M05 v P05
 - More extreme limb-darkening
 - Models can be distinguished at lower resolution
- Will show sub-sets of data for illustration

Model-fitting

- Each model predicts a *Centre-to-Limb Variation* of intensity (CLV)
- Calculate Hankel transform numerically, for assumed disk size
- Fit this model to the data by scaling model baselines equivalent to scaling size of model star
- Compare χ^2 values for different models

One baseline (silly!)

Two baselines - M05 model

Two solutions, both poor fits

Two baselines - P05 model

Poor fit

Reasonable fit

Observing with the VLTI J. S. Young -- From visibilities to science

Two baselines - observing time with VLTI

- Assume three ATs present \Rightarrow **no reconfiguration**
- Use AMBER in single-baseline mode
 - Switch between two of three available baselines every ~15 min
- Visibility curves shown have hour angle range 2h 30m, but could secure four visibilities on each baseline in ~2h

Six baselines - P05 model

Conclusions

- Limb-darkening measurements feasible with VLTI + first generation instruments:
 - precise measurement of visibility
 - angular resolution
 - spectral resolution
 - sensitivity
 - multiple baselines
- Care needed when analysing data
- Spatial constraints from interferometry may show up deficiencies in models